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Resolution Requirements for the Numerical Computation of Tonal
Noise in Compressors and Turbines of Aeroengines

T. Hfittl, G. Kahl, F. Kennepohl and K. Heinig
MTU Aero Engines GmbH

Dachauer Strasse 665
D-80995 Mfinchen, Germany

Abstract

The time linearized Euler method Lin3D is applied to two sets of test cases. 2D wave propagation test cases in
homogeneous flow are used to quantify numerical dissipation and dispersion of the discretization scheme. The
minimum number of mesh diagonals between two wave fronts has been found to be an appropriate measure of the
resolution of a wave. Correlations have been found that characterize the dissipation and dispersion behavior of the
code and therefore the resolution requirements for a given flow simulation. The transmission and reflection of plane
sound waves incident upon a single cascade of finite plates has also been calculated with Lin3D and compared with
an analytical method of Koch [5]. The computed ratios of transmitted or reflected to incident pressure wave
amplitude agree well with the analytical solution, even for scattered modes.

1. Introduction

The noise produced by jet engines has become one of the major concerns in today's pollution-
and noise-conscious society. The jet-exhaust noise has been reduced significantly with the
increasing by-pass ratios of modem turbofan engines. But now, the pure tonal noise, produced
by rotor-stator interaction in compressors and turbines can become a dominant source of engine
noise. Together with the noise generation and radiation, the sound transmission through blade
rows in axial-flow turbomachines is also of great importance. Various calculation methods
ranging from analytic methods for simplified flow and geometry, over empirical methods based
on correlations calibrated by experimental data, to the wide range of numerical methods have
been established within the aeroacoustic design process of turbomachines.

In this paper, we focus on a numerical calculation method, based on the time linearized Euler
equations. This CFD code Lin3D developed at MTU is already used for aeroelastic design of
aeroengine compressors and turbines. It may also be applied to the aeroacoustic design of these
engine components. In contrast with analytical methods a more realistic description of blade and
duct geometry is possible. Compared with Navier-Stokes methods, the computational
requirements of Lin3D are much smaller. Before applying a code to a new kind of problems, its
requirements and weaknesses have to be studied. It is the aim of the present study to investigate
the resolution requirements of Lin3D for aeroacoustic computations.

First, the wave propagation in homogeneous flow has been computed in order to quantify the
effect of numerical dissipation and dispersion on the solution. Then, the problem of the
transmission of a sound wave through a blade row has been solved where the accuracy of the
code can be benchmarked with an analytical method.
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2. Numerical Method

The CFD code Lin3D is a time-linearized Euler method for 3D cascade flows [2,3,4]. The
unsteady flow is assumed to be a small harmonic perturbation of the non-linear steady flow, so
that the steady flow problem is decoupled from the unsteady problem. As long as the wave
amplitudes remain moderate, the higher order terms in the governing equations derived under
this assumption can be neglected and the describing unsteady flow equations become linear. The
small-disturbance Euler equations are transformed into the frequency domain, so that the results
are given as amplitudes and phases of the flow variables in the whole (3D) computational
domain.

The base flow for the time linearized Euler code has been prescribed analytically for the
investigations discussed here, but it can be the result of a steady 3D Euler computation, as well.
Lin3D is restricted to small disturbances of the mean, inviscid, steady flow and its applicability
is limited to cases with (predominantly) attached flow. The code is based on the linearization of
the steady Euler method described in [1] and is an extension of the code described in [2,4].

Lin3D uses a Finite-Volume scheme with a 3-step Runge-Kutta time integration method. A
structured H-type mesh with node centered variable arrangement is required to describe the
geometry of the flow domain.

Lin3D has proven to be sufficient for most cases concerned with turbines. It is a fast and robust
tool routinely used in the design process to assess flutter stability and forced response of
compressor and turbine bladings. It features deforming meshes, non-reflecting boundary
conditions, arbitrary eigenmodes (including chordwise bending), forced-response calculations
for generalized forces due to up- and downstream disturbances and the possibility of calculation
of acoustic modes. Lin3D runs on a wide variety of platforms ranging from workstations to
multiprocessor vector supercomputers, with the option of parallel computing to speed up the
turnaround times.

3. Wave propagation in homogeneous flow

3.1 Computational domain and setup

The accuracy of the code for wave propagation in homogeneous 2D flow has been tested for
numerous upstream and downstream propagating waves. For each single test case the same
equidistant mesh has been used, where the vector of the homogeneous mean flow is parallel to
the mesh lines, see Figure 3.1. Physical and geometrical parameters of the cases are listed in
Table 3.1. In order to realize a plane 2D flow with the 3D code in cylindrical coordinates, a
small ratio of channel height (rip -rb = 0.2m) to tip radius (rip =300m) has been chosen and

discretized by 4 mesh cells.

Table 3.1: Physical and geometrical parameters of 2D wave propagation calculations.

L = 1.5n N, = 60 p. = 85.15kPa

T = 1.Om NY =40 Ma = 0.5

f6. = 600 a = 332.0- T, = 274.3K
S



(SYA) 5-3

S-'I

Ma . .-. -

8, .-- A- V -

L L~. ~ **

Figure 3.1: Flow domain of 2D wave propagation calculations (without blades).

Two parameters are varied, the circular frequency (o and the incidence angle 0 of the pressure

wave:
raU Ira MUA

coA 0.25 wB=' C°c,= T wD= 16-
T T T T

= 0, 15° ,30 ,450 ,__,3450 (not: 900,2700).

For upstream traveling waves (900<0<2700) the boundary conditions for a pressure

perturbation have to be specified at the outlet plane; for downstream traveling waves
(00':5<900 and 2700<0<3600) at the inlet plane. All waves are sinusoidal in the y-

direction. The amplitudes are sufficiently small, so that non-linear effects can be neglected (peak
to mean pressure variation of 0.1% of the static pressure).

3.2 Resolution of the waves

1 Ax/!
" - o Y • aix _a

- 1a

Figure 3.2: Geometry of 2D waves. Figure 3.3: H-type mesh geometry.



(SYA) 5-4

Although mean flow, flow domain, number of mesh points Nx, N , and wave number

a
are chosen to be identical for constant o), the resolution of the waves is not equal for the
simulation, as it depends on the incident angle 0. However, the wave lengths A also depend on

¢ for flow at Ma # 0. A characteristic quantity for the resolution R in discrete domains is the
minimum number of mesh cell diagonals between two wavefronts:

R = minj'a ), AC(a'2)1

A(ai) is the distance between two wavefronts along a line under an angle of a, to the

horizontal axis, see Figure 3.2.

cos ai + tan 0 sin a,

A. can be obtained from

using c. = a Ma cos,8, + a +aMasinfls tano
Cos 0

Two diagonals d, and d2 exist in a structured H-type mesh (Figure 3.3). Their lengths and their

angles a•, a2 are defined by

d =, Ax2 +(Axtanfl, +Ay) 2 , tana, = tanfl +Ay
AX

d2 Ax2 +(Axtan,=s-AY) 2 , tan a 2 =tanfls -y ,with =L L
Ax NN

3.3 Results

I.4

a) b) ) rd)

Figure 3.4: Unsteady pressure for four wave propagation test cases with the same incident
angle 0= 105' and different circular frequency to: a) o)A, b) oB), c) Oc , d) COD.
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Figure 3.5: Unsteady pressure for four wave propagation test cases with the same circular
frequency coc *and different incident angle 0: a) 0 165', b) 0 = 225', c)

S= 285-, d) 0 = 330-.

A first impression of the wave propagation in a 2D flow field is given in Figures 3.4 and 3.5.
Figure 3.4 demonstrates that the damping of the waves increases for higher 0) (smaller k, lower
R ). In Table 3.2, the values of the resolution R for four cases with the same circular frequency
cOc, plotted in Figure 3.5, are listed. This Figure shows that the damping depends on the

resolution R, which is a function of the incident angle 0 of the wave.

The purpose of the wave propagation test cases is to analyze, how strong numerical dissipation
and numerical dispersion can affect the flow solution. Numerical dissipation and dispersion are
unwelcome side effects of a discrete solution method and depend on the discretization scheme
of the code. Numerical dissipation leads to the exponential decrease of the wave amplitudes
A(x) in (horizontal) propagation direction and can be quantified by the decay rate Dec

. A(x + A)
Dec = -20. log (. A(x) for a downstream propagating wave

Dec = -20 logl0 A(x - for an upstream propagating wave
A(x)j

Numerical dispersion leads to an incorrect propagation velocity of a wave or to a change in its
propagation direction. Dispersion can be quantified by the phase change error Pce, the
difference between analytical P1 (x) and numerical phase P,, (x) change

Pce = I(P', (x + Ax) - P, (x)) - (P. (x + Ax) - P. (x))

Table 3.2: Resolution of the pressure waves of the four test cases in Figure 3.5.

Case a b c d
Incident angle 0= 1650 0 = 225- 0 285- 0 = 330°
Resolution R =22.4 R = 3.92 R =5.43 R = 40.0
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Figure 3.6: Decay rate Dec (left) and phase change error Pce (right) of the wave propagation
test cases drawn over the resolution R: L, o,, A I oB, roc, WOrD, lines:

Dectq =9.2 R- 5 or Pcelq =1.1.R 2 '.

101 100. A

100i

" , 011 4 A
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Figure 3.7: Decay rate Dec (left) and phase change error Pce (right) of the wave propagation
_test cases drawn over the resolution R for two different convergence criteria: A

low convergence crite-rium (Res,, =5-10-7), 0A high convergeiice criterium

(Res,, = 5.10-O ), lines: Dec1 q 9.2. R-2 5 or Pcelq = 1.1. R-2".

In Figures 3.6 and 3.7, the decay rates and the phase change errors of the wave propagation test
cases are drawn over the resolution R (section 3.2). Obviously, Dec and Pce are both
correlated with R : With decreasing R, the decay rate and the phase change error and therefore
numerical dissipation and dispersion increase.

When analysing Dec and Pce for different to, it is not astonishing, that cases with higher
frequency ro (smaller k ) are worse resolved. Nevertheless, the symbol clouds for constant to

overlap with other distributions, because the incident wave angle •b has a remarkable effect on

the resolution. Values of R for constant to can even differ by one order of magnitude.
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Using logarithmic scales on both axes, most of the plotted values are close to a straight line
(y = a Rb ). The parameters a,b can be obtained by the least squares method:

Deckq = 9.2 R

Pcelq =1.1. R-"

From linear theory for a 2nd order CFD code on a uniform mesh it is expected, that a 3rd order
relationship exists between the decay rate and the resolution [6] and a 2nd oder relationship
between the phase change error and the resolution. Better agreement with the 3rd order decay is

achieved, if only cases B,C and D are used for the least squares fit ( Dectq = 14.9- R-2 8 ). The

results of cases A might be influenced by the convergence criterion (density residual Res,) of

the code. This is demonstrated in Figure 3.7, where simulations with good convergence criterion
are compared with simulations with worse convergence criterion: For higher R, the values of
Dec and Pce deviate significantly from the least squares fit of the good convergence criterion.
For a smaller (better) convergence criterion the cases with lower R are almost uninfluenced, but
the values of Dec and Pce for higher R come closer to the correlation function.

Dec and Pce represent the accuracy of the calculation of a wave within the size of one mesh
cell Ax. They define minimum requirements for the resolution of a pressure wave. As an
example: if the decrease of the pressure amplitude by I dB (0.1 dB) due to numerical dissipation
after 200 mesh cells Ax is assumed to be acceptable, we obtain Dec =5 10-3 (5-10-4) and

need a resolution of the wave of R = 20 (50).

4. Interaction of plane waves with flat plates

4.1 Geometry and settings

reflected transmitted

wave T w wae

ZX
0- 0

Ma>0

incident
wave

Figure 4.1: Geometry of the flat plate test cases.
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In this section, the transmission and reflection of plane sound waves incident upon a single
cascade of finite plates is studied. This problem, including scattering, has been solved by Koch
[5] by means of the finite Wiener-Hopf technique. These analytical results will be used for
comparison with computations using Lin3D.

A single cascade of parallel flat plates of length l0 =lm, staggered at an angle 8, = 60' and at

zero angle of attack, is considered and is shown in Figure 4.1. 0 and 0 = -fi# are two

different definitions of the angle of the incident wave. For the computation, the regions in front
of the cascade, Lf, and behind it, Lb, both have an axial extension of 1T = Lb = 0.5m. Two

circular frequencies have been studied: woA = 0.25mza- as a sub-resonant example and

0B = lra•- as a super-resonant example, where scattered modes appear. Only cut-on modes are

considered. For other physical, geometrical and numerical parameters, the same values have
been chosen as for the wave propagation test cases in section 3.

4 i~* 4

4.

•'t;

a) b) c

Figure 4.2: Unsteady pressure for three flat plate test cases: a) CoA, 0=3450, b) WoA,

0=2250 ,c) (o, ,b= 2250.

4.2 Sub-resonant test cases

The incident waves interact with the blades, when passing through a blade row. If the blades are
perpendicular to the wave front, the wave is completely transmitted. For blades that are parallel
to wave fronts, the waves are almost completely reflected (Close to this point, full reflection
appears for a certain angle depending on the Mach number). In general, the incident acoustic
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wave is partially reflected and partially transmitted through the blade row. For the sub-resonant
test case, where mode scattering does not appear, two snap-shots of the pressure field are shown
in Figures 4.2 a) and b).

For six representative cases, some parameters can be found in Table 4.1. Beside the incident
wave angles 0, 0, the wave numbers k, kx, ky and the wave lengths 2, 2x, Ay are listed:

S2222 2/z 2

k=-i k=-, k =:k tan = A 2' 2r A, 2)k
a ' cx' 2 +A2y kx kV•

Waves with a cut-off ratio > I are cut-on (propagating waves), while waves are cut-off

(exponentially decaying) for < 1.

Table 4.1: Parameters of some of the sub-resonant flat plate test cases.

750 1350 0.785 -0.492 0.492 9.035 -12.778 12.778 1.140 0.4477 0.0885

1200 1800 0.785 -1.047 0.000 6.000 -6.000 CIO 00 0.6147 0.2820
1650 2250 0.785 -1.074 -1.074 4.137 -5.850 -5.850 1.366 0.9108 0.2284
2550 3150 0.785 0.638 -0.638 6.965 9.850 -9.850 2.300 0.5313 0.4769
3000 3600 0.785 0.628 0.000 10.00 10.000 0 0 oo 0.7641 0.4700
3450 450 0.785 0.374 0.374 11.86 16.778 16.778 1.497 0.9763 0.1606

1 i/" 1

0.90.9

0.8 0.8

0.7 0.7

0.6 0z
S0.5 7 ~,•:'a., .4 . . ts. i•

0.3 -(0.3 7

0.202
0.2 2 7

0.1 0.1

0 00
0 100 200 300 100 200 300

Figure 4.3: Variation of transmitted (left) and reflected pressures (right) with incidence angle
for the sub-resonant cases: Lines: analytical solution [5], 0 Lin3D.

The cut-off ratio x is also shown in Table 4.1:

___ _ k_ k >0
=May +41 - Ma 2 ky y

I k kY<0
Ia _ -1 Max y
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Furthermore, the (analytic) ratios of transmitted p' or reflected p' wave amplitudes to the

amplitudes of the incident pressure wave p' are listed for the six cases in Table 4.1.

The variations of these ratios and with incidence angle 0 are drawn in

Figure 4.3. A maximum transmission ratio Po =1 is obtained for the two wave directions,

where the upstream or downstream wave fronts are perpendicular to the blades (0 = 600, 2400).

These maxima are correlated with minima of the reflection ratio 1 0 0. Analytical and

numerical results agree well with each other within the whole range of 0.

4.3 Super-resonant test cases

Scattered pressure waves (mi # 0) are generated, when a pressure wave interacts with a cascade.
For some of the cases with higher circular frequency oB = zra- scattered modes can be cut-on:

m=-I iscutonfor 10'<0<174'
m = I is cuton for 223' < 0 < 294'

Therefore the cases with this frequency are called super-resonant. A snap-shot of the pressure

field of one super-resonant case is shown in Figure 4.2 c). The variation of the ratios PM M

Ip"Ap P"I with incidence angle 0 is drawn in Figure 4.4. Here again, analytical and numerical

results agree well with each other within the whole range of 0.

5. Summary

The application of the time-linearized Euler method Lin3D to 2D wave propagation problems in
homogeneous flow shows the dependency of numerical errors with the mesh resolution. For
skewed meshes, the minimum number of mesh diagonals between two wave fronts is an
appropriate measure for the mesh resolution. Numerical errors off the discretization scheme in
form of numerical. dissipation and numerical dispersion increase for increasing frequency at
constant mesh. For constant frequency, the resolution of a wave depends on the angle of the
incident wave and varies within one order of magnitude. The angle of the incident wave has
therefore a significant effect on numerical errors. Correlations, calibrated with the simulations,
can be used further to check the mesh size before performing simulations with Lin3D.

In a second study, the transmission and reflection of plane sound waves incident upon a single
cascade of finite plates has been calculated with Lin3D. Computed results have been compared
with an analytical method of Koch [5]. It has been looked at sub-resonant test cases and at
super-resonant cases, where cut-on scattered modes appear. The computed ratios of transmitted
or reflected to incident pressure wave amplitude agree well with the analytical solution. Even
the ratios for scattered modes can be predicted accurately with Lin3D.

As a next step, the simulation of more realistic test cases with finite blade thickness, or 3D flow
is envisaged.
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Figure 4.4: Variation of transmitted (top) and reflected pressures (bottom) with incidence
angle for the super-resonant cases: Lines: analytical solution [5], 0 Lin3D.
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